If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-120x+90=0
a = 12; b = -120; c = +90;
Δ = b2-4ac
Δ = -1202-4·12·90
Δ = 10080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10080}=\sqrt{144*70}=\sqrt{144}*\sqrt{70}=12\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-12\sqrt{70}}{2*12}=\frac{120-12\sqrt{70}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+12\sqrt{70}}{2*12}=\frac{120+12\sqrt{70}}{24} $
| 788.90=46(x+2.15) | | 9^x=3^x+12 | | -18u+-2u-14u=18 | | 17g-4g+9=-17 | | -8/m-5=-2 | | 2.6=-0.6y | | 7(7^3x)=7^x+7 | | 5.9=2.2-0.7y | | 3r-4+2r=r-5 | | a(8181)=a(8181-1)+a(8181-2)-a(8181-3) | | 11x+4x=2x-11 | | 18p^2-3p+24=0 | | 7x-2=4x+10= | | 7w+2=3w–11 | | 6=10w-7 | | (5/6)x=34.29(1/6) | | 12x-80=6x-14 | | t/12+3=-4 | | (5/6)x=34.29*(1/6) | | 10(s-5)=-74 | | 17h-34=-34 | | -5-2y=-13 | | -5a-25=75 | | -(c-5)=-15 | | 14+5p=8p+4 | | n-1.6=13.2 | | t/9+60=47 | | -2d-(-14)=15 | | 3/c+23=38 | | -6/p=48 | | 6x+19=x-1 | | -2d-(-14)=5 |